Math 261
Fall 2023
Lecture 5


Class QZ 3
 $=\frac{x^{2} \cdot 1-(x+h)^{2} \cdot 1}{x^{2}(x+h)^{2} \cdot h} \quad \begin{array}{ll}(c)= \\ x^{2}(x+h)^{2} & \text { answer with } h=0 . \\ & \text { Box Your final Ans }\end{array}$ $=\frac{x^{2}-(x+h)^{2}}{x^{2}(x+h)^{2} \cdot h}=\frac{x^{2}-x^{x}-2 x h-h^{2}}{x^{2}(x+h)^{2} \cdot h}=\frac{-2 x h-h^{2}}{x^{2}(x+h)^{2} \cdot h}$
$=\frac{\hbar(-2 x-h)}{x^{2}(x+h)^{2} \cdot k}=\frac{-2 x-h}{x^{2}(x+h)^{2}}$
for $h=0$

$$
\begin{aligned}
\frac{-2 x-0}{x^{2}(x+0)^{2}} & =\frac{-2 x}{x^{2} \cdot x^{2}} \\
& =\frac{-2}{x^{3}}
\end{aligned}
$$

Intro. To functions


Every $x$ value can have only one $Y$ Value
$f(x)=3 x-2$ Linear function

$$
f(0)=3(0)-2=-2 \Rightarrow(0,-2)
$$

$$
f(2)=3(2)-2=4 \Rightarrow(2,4)
$$

$$
f(-1)=3(-1)-2=-5 \Rightarrow(-1,-5)
$$


as $x \rightarrow 2$ from right side $\Rightarrow f(x)=y \rightarrow 4$
as $x \rightarrow 2$ " left side $\Rightarrow f(x)=y \rightarrow 4$

$$
\begin{aligned}
& f(x)=\sqrt{x} \\
& \{\geq 0
\end{aligned}
$$

Domain $[0, \infty)$
Range $[0, \infty)$

| $x$ | $y$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 1 |
| 4 | 2 |
| 9 | 3 |


as $x \rightarrow 4$ from right, $y \rightarrow 2$ as $x \rightarrow 4^{+}, y \rightarrow 2$ as $x \rightarrow 4$ left, $y \rightarrow-2^{\Rightarrow}$ as $x \rightarrow 4, y \rightarrow 2$

$$
\begin{aligned}
& f(x)=\frac{1}{x-1} \\
& x-1 \neq 0 \rightarrow x \neq 1
\end{aligned}
$$

Domain: $(-\infty, 1) \cup(1, \infty)$

$$
f(0)=\frac{1}{0-1}=-1
$$

$$
f(2)=\frac{1}{2-1}=1
$$



Range: $(-\infty, 0) \cup(0, \infty)$
as $x \rightarrow 1^{+}, y \rightarrow \infty$

$$
\text { as } x \rightarrow 1, \quad y \rightarrow-\infty
$$

Piece-wise function

$$
f(x)= \begin{cases}x^{2} & \text { if } x<2 \\ -4 & \text { if } x \geq 2\end{cases}
$$

as $x \rightarrow 2^{+}, f(x)=-4$
as $x \rightarrow 2^{-}, f(x) \rightarrow 4$


$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lll}
-x & \text { if } x< \\
4 & x= \\
x^{2}-1 & \text { if } x
\end{array}\right. \\
& \text { as } x \rightarrow 1^{+}, f(x) \rightarrow 0
\end{aligned}
$$

as $x \rightarrow 1^{-}, f(x) \rightarrow-1$


$$
f(1)=4
$$



$$
f(x)=x^{2}
$$

Simplify $\frac{f(x+h)-f(x)}{h}$, then evaluate for
Difference quotient

$$
h=0
$$

$$
\begin{aligned}
\frac{(x+h)^{2}-x^{2}}{h}=\frac{x^{2}+2 x h+h^{2}-x^{2}}{h} & =\frac{2 x h+h^{2}}{h} \\
& =\frac{h(2 x+h)}{h} \\
& =2 x+h \\
& 2 x
\end{aligned}
$$

$f(x)=\sqrt{x}$
Simplify the difference quotient then evaluate for $h=0$.

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h} \quad \text { for } h=0 \\
& =\frac{\sqrt{x+h}-\sqrt{x}}{h} \quad \frac{\sqrt{x}-\sqrt{x}}{0}=\frac{0}{2} \\
& =\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} \\
& \quad=\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}
\end{aligned}
$$

Now evaluate for $h=0$

$$
\begin{aligned}
=\frac{1}{\sqrt{x+0}+\sqrt{x}} & =\frac{1}{\sqrt{x}+\sqrt{x}} \quad=\frac{1}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

Class QZ 4
Consider $\quad f(x)=\frac{1}{x}$
Simplify the difference quotient, the evaluate for $h=0$. Box Your final Answer.

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=\frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\frac{x-(x+h)}{h x(x+h)}=\frac{x-x-h}{h x(x+h)} \\
& =\frac{-h}{h x(x+h)}=\frac{-1}{x(x+h)} \text { for } h=0 \frac{-1}{x(x+0)}=\frac{-1}{x \cdot x}=\frac{-1}{x^{2}}
\end{aligned}
$$

